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Abstract  -- This paper presents a method for the
investigation of AC and large signal steady-state stability
of electrical (analog/RF) circuits. In both cases
stability/instability are detected through fast calculation
and analysis of circuit poles. Thanks to iterative
algorithms (Krylov-Subspace methods) applied to
Modified Nodal formulation of conversion matrices a
selection of poles is computed, allowing the method to be
applied to large size circuits of any kind of topology.

I. Introduction

Simulation tools developed on the basis of Harmonic
Balance (HB) and associated techniques allow today the
steady state analysis with reasonable computing time and
memory requirement for large size nonlinear RF circuits.
These techniques allow to reliably simulate large size
forced/autonomous circuits under single tone excitation or
arbitrary modulated carrier excitation in presence of noise
sources.
     Nevertheless this panoply of tools intended for
commercial CAD applications does not allow to predict
systematically instabilities that can occur, in particular for
large size nonlinear circuits. From this viewpoint, the lack of
efficient algorithms to detect possible instabilities makes any
real design not very reliable.
     Theoretical studies and efficient methods to investigate
linear instability behavior have been established a long time
ago [1-3] and more recently algorithms for nonlinear
instabilities of small size circuits have been proposed [4-8].
Unfortunately, expanding these suggested methods to large
size circuits and general topology becomes quickly
inextricable and inefficient due to large CPU times and
storage requirements. These factors are often incompatible
with CAD requirements.
     In this paper, a novel, efficient and rigorous method is
proposed to analyze circuit instabilities, valid for both linear
and nonlinear circuits. It can handle large size circuits of any
topology, using the Modified Nodal formulation, conversion
matrices and Krylov-subspaces for the system resolution.
     Section II of this paper describes the theory of poles in
linear & nonlinear electrical networks, section III discusses

the mathematical algorithms to compute the poles and their
implementations. The method is illustrated with three
different examples.

II. Poles in electrical networks

A. The AC case:
Let us consider an electrical circuit in DC equilibrium
described by Modified Nodal equations. Now let us
stimulate the circuit with a small signal up of frequency fp

around its DC operating point. The circuit response xp is the
solution of the linear system:

Ypxp = up          (1)

Where Yp is the admittance matrix of the circuit:

Yp = Gdc + j2πfpCdc      (2)

Using the circuit Modified Nodal equations and the classical
associated equations, Gdc and Cdc are respectively the
equivalent conductance and capacitance matrices,
representing the static and dynamic parts of the circuit.
 If we consider the system output aT.x for a single input uk,
the network transfer function H(s) is [9]:
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ek and a are incident vectors selecting respectively the input
and the desired output.
     The network poles pi are the values of s (s=σ + j2π f)
such that det(Ys) = 0. They are the solution of the
generalized eigenvalue problem:

(Gdc + piCdc)X = 0                (5)

that can be formulated as:

GdcX = - piCdcX          (6)

B. The large signal Steady-State case:
Now suppose that our circuit is in large signal periodic
steady-state conditions (it is driven by large signal periodic
stimuli S0 of fundamental frequency f0 and all the circuit
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nodes V are in steady-state). The circuit can be described by
the following Modified Nodal equations in the frequency
domain:

F(V) = Ik(V) +  j2πkf0Qk(V) + S0         (7)

Ik and Qk respresent the kth Fourier components of the
currents and charges at steady-state respectively.
( NkN ≤≤− ) where N is the number of harmonics used
to compute the steady-state.
      Let us stimulate the circuit with a small signal up of
frequency fp around its large signal steady-state. The circuit
response Xp is thus [10]:

 JpXp = up          (8)

 Jp is known as the “frequency conversion matrix”:

 Jp = Gss + j2πf0KCss + j2πfpCss           (9)

 It is calculated from the Harmonic Balance (HB) Jacobian
matrix:

 J0 = Gss + j2πf0KCss (10)

 K is a diagonal matrix containing the harmonic indices. Gss

and Css are block circulant matrices built from the Fourier
components of the Modified Nodal conductance and
capacitance matrices. All details concerning these matrices
can be found in [10].
 
 Similar to the AC case, the steady-state network poles pi are
the value of s ( s = σ + j2π ( kf0+f) ) such that det(Js) = 0.
They are the solution of the generalized eigenvalue problem:

 J0X = - piCssX            (11)
 
C. Poles and circuit stability:
 A circuit is stable if all the poles have negative real parts
(algebraic first Lyapunov criterion). In other words a circuit
is unstable if at least one of its poles has a positive real part.
Therefore a stability analysis can be based on the
identification of poles having positive real parts.
      Regarding the Pole/Zero cancellation problem [11], pole
computation is in principle more desirable than Bode
magnitude and phase plots that are typically used by
designers. For instance, if there is a closely spaced pole-zero
pair, a Bode plot will not reveal it whereas pole computation
will do.
 
D. Comments:
 In the AC case, the circuit response xp, solution of equation
(1) is at the same frequency fp as the input signal up. In the
large signal steady-state case, due to non-linearities, the
circuit will exhibit frequency conversion. It means that the
circuit response Xp, solution of equation (8) contains
components at the different frequencies: f = k f0 + fp

( NkN ≤≤− ) where N is the number of harmonics used
to compute the steady-state. This implies that each pole p =
p_r+ jp_i will appear in conjunction with a family of poles
of the form: p_r + j(k f0 +  p_i) . This phenomenon is
illustrated in the first example below.
 

 The equations (6) and (11) are formulated thanks to the
Modified Nodal formulation of the circuit. If the circuit
contains frequency dependent elements such as transmission
lines or S parameter blocks their characteristics are
approximated either by a s domain polynomial or rational
function, to be handled by the method.
 

III. Numerical methods for pole computation

 We have seen in the previous paragraph that one needs to
solve the following generalized eigenvalue system to find the
circuit poles:

 AX = λiBX         (12)

In the AC case A = Gdc and B = -Cdc and in the large signal
steady-state case A = J0 and B = -Css.
      QZ is the “standard” method to solve system (12) [9][12].
It is a numerically stable algorithm and its computational
cost is O(n3) where n is the size of the system. This method
computes all the eigenvalues (poles) λi and is limited to
moderate size systems (n < few hundred). It could be used
for AC stability analysis but it is clearly untractable for large
signal steady-state stability of RF circuits (which system size
n may reach millions).
      It should be noticed that it is not necessary to compute
all the circuit poles, because only the right most is/are
required to detect instability. The Krylov subspace iterative
methods are good candidates to solve partial eigenvalue
problems [13]. They are able to find selected eigenvalues
with a computational cost close to O(n). Basic Arnoldi or
Lanczos algorithms allow to find eigenvalues with the
largest (or smallest) module. They are less suitable to our
problem than a variant of Arnoldi method (that uses
Chebyshev acceleration), directed to determine the right-
most eigenvalues [14-15]. The Arnoldi method with
Chebyshev acceleration is reasonably easy to code, and
mathematical libraries containing such routines exist [16-
17]. It means that the implementation of stability analysis
inside a general purpose Spice-like or HB-based simulator is
relatively simple.
 
A. The AC case:
 The Arnoldi/Chebyshev algorithm solves “standard”
eigenvalue systems:

 AX = λX   (13)

 The system (6) must then be transformed (A=-Cdc
-1Gdc or

A=-Gdc
-1Cdc) to be solved. As Cdc is often singular, the

second transformation (A=-Gdc
-1Cdc) is preferred,

corresponding to the inverted problem (λi =1/ pi). The
Arnoldi/Chebyshev algorithm does not require explicitely
the A matrix, but only matrix-vector products.
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B. The large signal steady-state case:

 As for the AC case the generalized eigenvalue system (11)
has to be transform into a “standard” eigenvalue system of
form (13), with:

A=-Css
-1J0     (14)

 Or:  A=-J0
-1Css                   (15)

 J0 and Css are matrices function of the steady-state operating
point. They have a special structure (Block
Toeplitz/Circulant) and products with vectors can be
performed efficiently with a computational cost close to
O(n.log(n)) [18].
      AC and large signal steady-state stability analyses have
been implemented in an advanced version of the electrical
(analog/RF) simulator Eldo RF using QZ and
Arnoldi/Chebyshev algorithms. Eldo RF computes the
steady-state with a HB based algorithm.
     The DC stability analysis is used to check the stability of
forced circuits and also to provide an estimation of the
oscillation frequency for autonomous circuits (oscillators).
The large signal steady-state stability analysis is used to
check the stability of forced and autonomous circuit steady-
state results. The implemented analysis has been intensively
tested with different family of circuits and revealed that most
of the circuits showing steady-state convergence difficulties
contained instabilities.
 

IV. Examples

The first example is a LNA circuit operating in the 100MHz
range. The presented method is used to check AC stability of
the circuit. We find a pair of complex conjugate poles
(−4.9487E+05 +/- j 6.2830E+09) corresponding to the
resonator. The large signal steady-state stability has been
performed on this circuit to compute all the circuit poles.

The steady-state is stable, all the poles are located in the left
half part of the plan and we actually find a collection of
poles of the form (−4.9487E+05 +j(2.π.k.f0  ±6.2830E+09).

The second example is an oscillator. The steady-state
stability analysis provides a collection of poles having the
same positive real part and imaginary parts close to 2.π.k.f0.
We first thought that these poles correspond to the inherent
instability related to the oscillation frequency. In fact after
investigation of the AC stability we realized that the circuit
contained 2 oscillation frequencies (2 pairs of complex
conjugate poles with positive real parts, the first
corresponding to the required oscillation frequency and the
second being a spurious one). After redesigning the circuit to
remove the undesired instability, we finally realized from the
large signal steady-state stability results that no more poles
appear in the right half part of the plan.

The third example is a receiver circuit driven by multitone
signals and containing a RF amplifier followed by an I/Q
mixer (see figure 1). The amplifier bias is controlled by the
power at the output of the mixer. The complete circuit netlist
contains about 1000 components (linear & nonlinear
devices) and 600 nodes. A typical analysis of this circuit
consists of a 2 tone (1 RF & 1 LO) steady-state analysis with
a sweep of the RF power (from –35dBm to 0dBm) in order
to characterize the 1dB compression point. For RF power
level above –10dBm the steady-state algorithms has
difficulties to converge. We thus compute the stability for
each large signal steady-state results and find out that the
circuit becomes unstable at PRF=-10dBm (i.e. the real part of
a collection of poles moves from the left to the right half part
of the plan and crosses 0 at –10dBm).

Figure 1: Block diagram of the receiver circuit.
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V. Conclusion

We present a new method to compute the linear (AC) and
nonlinear (large signal multitone steady-state) stability of
electrical (analog/RF) circuits. This method is based on a
Modified Nodal formulation of the circuit equations,
frequency domain conversion matrices and the computation
of selected poles using Krylov-subspace iterations. The
method can handle large circuits of any kind of topology and
is easily implementable in a general purpose/HB based
circuit simulator. It has been introduced in a development
version of the electrical simulator Eldo RF and is illustrated
in this paper by various examples. The described method
represents (from the author point of view) the state-of-the-art
in term of large signal steady-state analysis allowing its use
in CAD tools to verify large size real designs.
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